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Outline

I will describe three Bayesian adaptive designs for three types of
early phase clinical trials.

Phase I dose-finding trials based on a binary toxicity response
– phase I tox

Phase I dose-finding trials based on a time-to-event toxicity
response with late onset toxicity – phase I tite tox

Phase II multiple-arm randomized trials with adaptive
randomization – phase II AR
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Phase I tox

In phase I dose-finding based on toxicity:

Oncologists want to find an appropriate dose level that is
effective to the disease and yet is not "too toxic"

For example, < 30% of the patients will experience the
dose-limiting toxicity (DLT) – A binary random outcome

The highest dose of which the probability of toxicity is less than
pT , say, pT = 0.30, is called the maximum tolerated dose, or the
MTD.

Underlying assumption: a higher dose is more effective
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Trial set up and an up/down principle

Align the doses from the lowest to the highest, say dose
1, 2, . . . , 8.

Treat the first cohort of patients (cohort size ≥ 1) at the starting
dose

Depending on the observed binary toxicity outcomes, make a
decision on the dose level for treating the next cohort

If the observed toxicity rate is much greater than the target
pT , the decision should be to de-escalate;
If the observed toxicity rate is close to the target pT , the
decision should be to stay – continue to treat patients at the
current dose;
If the observed toxicity rate is much lower than the target pT ,
the decision should be to escalate.

By adaptively changing the dose levels at which patients are
treated, the goal of the trial is to find the MTD
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A typical set of observation

Notation: E = Escalation; S = Stay; D = De-escalation.

Current dose observed toxicity Decision
1 0/3 E

2 0/3 E

3 2/3 D

2 2/6 S

2 ... ...

At the end of the trial, one dose is selected as the estimated MTD.

In the above case, probably dose 2 will be selected.
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A practical Bayesian deign

The proposed design 1) provides the decisions need to be made at
every step of the trial and 2) selects a final dose as the estimated
MTD at the end.

The method is implemented in an Excel macro to be
demonstrated next (http://odin.mdacc.tmc.edu/∼yuanj)

Suppose patients are treated at dose i

Identify the number of patients treated at this dose and go to
the corresponding column in the table;

Identify the number patients experienced toxicity and go to the
corresponding row in the table;

the corresponding entry in the cell provides the
dose-assignment decision that one needs to take.
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Probability model

Likelihood function is a product of binomial densities:
l(p) ∝

∏d

i=1 pxi

i (1 − pi)
ni−xi, where ni and xi are the numbers of

patients treated at dose i and experienced DLT, respectively.

The priors of pi are i.i.d. Beta(α, α), where α takes a small
value, e.g., α = 0.005, resulting in a U-shaped prior.

Posteriors are beta with known parameter values.

Note: One can assume a dose-response curve (the gain of doing

this for phase I trial is not clear)
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Decision rules

Let D, S, E denote the decision to de-escalate to dose (i − 1), stay
at dose i, and escalate to dose (i + 1), respectively. Define the
posterior probabilities for the three intervals:

q(D, i) = P (pi − pT > K1σi|data),

q(S, i) = P (−K2σi ≤ pi − pT ≤ K1σi|data),

q(E, i) = P (pi − pT < −K2σi|data).

The dose-assignment rule

Bi = arg max
m∈{D,S,E}

q(m, i),

i.e. take the decision that has the maximum posterior probability.

A decision-theoretic interpretation of these rules can be found
in Ji et al. (2007, Stat Sinica)
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Two issues

What if the first dose is very toxic?

What if dose i − 1 is safe, but dose i is very toxic? For
example, pi−1 = 0.05 and pi = 0.6 (while the pT = 0.3).
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Exclusion rule

Define
Ti = 1 {P (pi > pT |data) > ξ} ,

where 1{} is the indicator function and ξ ∈ (0, 1) is a cutoff value
(e.g., ξ = 0.95). For a large value of ξ, Ti = 1 implies that dose i is
very likely to be highly toxic, and escalation to this dose should be
permanently prohibited. To incorporate this rule, modified decision
rule is given by

B
(e)
i = arg max

m∈{D,S,Ẽ}
q(m, i),

where q(Ẽ, i) = q(E, i)(1−Ti+1).Therefore, if Ti+1 = 1, the probability

qẼ,i equals zero and the assignment rule B
(e)
i can be only D, to de-

escalate, or S, to stay.
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Dose-finding algorithm

Suppose that the current tried dose is i for i = 1, . . . , d. After
the toxicity outcomes of the last cohort are observed, select the
dose for treating the next cohort among {(i − 1), i, (i + 1)}

based on the assignment rule B
(e)
i . There are two exceptions: if

i = 1, the next available doses are {i, (i + 1)}; if i = d, the next
available doses are {(i − 1), i}.

BASS XV, Savannah GA – p.12/68



Dose-finding algorithm con’t

Suppose that dose 1 is a dose that has been tried previously. If
T1 = 1, terminate the trial due to excessive toxicity. Otherwise,
terminate the trial when the maximum sample size is reached.

In the special case of cohort of size 1, by convention, do not
apply the exclusion rule Ti until two or more patients have been
evaluated at a dose.
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Dose-finding algorithm con’t

At the end of the trial, select the dose as the estimated MTD
with the smallest difference |p̂∗i − pT | among all the tried doses
i for which Ti = 0.

Quantity p̂∗i is the isotonic transformation estimator of the
posterior mean p̂i so that p̂∗j ≤ p̂∗i for j > i.

If two or more doses tie for the smallest difference, perform the
following rule. Let p∗ denote the transformed posterior mean of
the tied doses.

If p∗ < pT , choose the highest dose among the tied doses.
If p∗ > pT , choose the lowest dose among the tied doses.
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Operating characteristics

Recommendation percentage at dose level Tox Ave.

pT = 0.25 % n

Dose 1 2 3 4 5 6 7 8

Scenario 1 5 25 50 60 70 80 90 95 none

Bayes % MTD 13 79 8 0 0 0 0 0 0 25 30

# Pts 7.7 16.1 5.8 0.5 0 0 0 0

3+3 % MTD 24 58 16 2 0 0 0 0 0 25 12

# Pts 4.0 5.0 2.6 0.4 0 0 0 0

BCD % MTD 10 78 11 1 0 0 0 0 0 24 30

# Pts 11.4 11.5 5.2 1.4 0.3 0.1 0 0

CFM % MTD 6 80 14 0 0 0 0 0 0 29 30

# Pts 5.2 16.3 7.5 0.9 0 0 0 0

CRM % MTD 6 83 11 0 0 0 0 0 0 27 30

# Pts 5.7 18.6 4.9 1.0 0 0 0 0
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Operating characteristics

Recommendation percentage at dose level Tox Ave.

pT = 0.25 % n

Dose 1 2 3 4 5 6 7 8

Scenario 2 1 2 3 4 5 6 25 50 none

Bayes % MTD 0 0 0 0 2 22 62 14 0 12 30

# pt 3.2 3.2 3.4 3.5 3.7 4.5 5.9 2.6

3+3 % MTD 0 0 0 2 3 21 46 8 0 11 27

# pt 3.1 3.2 3.3 3.4 3.3 3.7 4.5 2.2

BCD % MTD 0 0 1 2 7 24 56 10 0 10 30

# pt 3.2 3.6 3.6 3.5 3.8 5.4 4.8 2.1

CFM % MTD 0 0 0 0 1 22 61 16 0 12 30

# pt 3.1 3.0 3.1 3.5 3.7 5.1 6.3 2.1

CRM % MTD 0 0 1 1 5 22 50 21 0 13 30

# pt 3.1 3.4 3.3 3.7 3.6 4.4 5.1 3.4
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Operating characteristics

Recommendation percentage at dose level Tox Ave.

pT = 0.25 % n

Dose 1 2 3 4 5 6 7 8

Scenario 3 1 5 50 60 70 80 90 95 none

Bayes % MTD 0 79 21 0 0 0 0 0 0 22 30

# pt 5.5 13.2 10.2 1.0 0 0 0 0

3+3 % MTD 0 70 28 2 0 0 0 0 0 22 13

# pt 3.1 5.2 4.4 0.7 0.1 0 0 0

BCD % MTD 0 60 39 1 0 0 0 0 0 22 30

# pt 4.9 14.3 8.2 2.2 0.4 0 0 0

CFM % MTD 0 56 44 0 0 0 0 0 0 28 30

# pt 3.1 11.7 13.1 2.0 0.1 0 0 0

CRM % MTD 0 49 51 0 0 0 0 0 0 26 30

# pt 3.1 13.0 12.0 1.8 0 0 0 0
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Operating characteristics

Recommendation percentage at dose level Tox Ave.

pT = 0.25 % n

Dose 1 2 3 4 5 6 7 8

Scenario 4∗∗ 40 50 60 70 80 90 95 99 none

Bayes % MTD 31 2 0 0 0 0 0 0 67 41 19

# pt 16.8 1.8 0.2 0 0 0 0 0

3+3 % MTD 38 9 1 0 0 0 0 0 52 43 6

# pt 4.7 0.5 0.6 0.7 0 0 0 0

BCD % MTD 38 2 0 0 0 0 0 0 60 45 18

# pt 12.6 4.6 1.2 0.2 0 0 0 0

CFM % MTD 38 3 1 0 0 0 0 0 58 42 14

# pt 11.7 1.9 0.5 0.1 0 0 0 0

CRM % MTD 47 2 0 0 0 0 0 0 51 42 23

# pt 20.2 2.5 0.2 0 0 0 0 0
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Operating characteristics

Recommendation percentage at dose level Tox Ave.

pT = 0.25 % n

Dose 1 2 3 4 5 6 7 8

Scenario 5 15 25 35 45 55 65 75 85 none

Bayes % MTD 31 41 21 7 0 0 0 0 0 24 30

# pt 12.4 9.5 5.5 1.9 0.3 0 0 0

3+3 % MTD 29 37 20 7 1 0 0 0 8 26 12

# pt 4.4 3.9 2.4 0.9 0.2 0 0 0

BCD % MTD 21 46 22 6 1 0 0 0 5 26 29

# pt 10.6 9.2 5.7 2.5 0.8 0.1 0 0

CFM % MTD 15 44 32 7 0 0 0 0 0 27 30

# pt 8.0 10.6 8.0 2.6 0.4 0 0 0

CRM % MTD 36 47 14 2 0 0 0 0 0 23 30

# pt 13.8 11.4 3.6 0.9 0.2 0 0 0
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Operating characteristics

Recommendation percentage at dose level Tox Ave.

pT = 0.25 % n

Dose 1 2 3 4 5 6 7 8

Scenario 6 5 15 25 35 45 55 65 75 none

Bayes % MTD 2 24 42 24 7 0 0 0 0 22 30

# pt 5.1 8.2 9.2 5.7 1.6 0.3 0 0

3+3 % MTD 9 28 34 22 5 0 0 0 0 21 15

# pt 3.6 4.3 3.8 2.3 0.8 0.2 0 0

BCD % MTD 1 29 44 19 6 1 0 0 0 21 30

# pt 6.8 8.7 7.5 4.4 1.9 0.6 0.1 0

CFM % MTD 0 14 49 29 6 0 0 0 0 24 30

# pt 3.9 6.2 10.7 7.1 1.8 0.3 0 0

CRM % MTD 4 37 45 12 2 0 0 0 0 20 30

# pt 5.5 11.5 8.9 3.4 0.7 0.1 0 0
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Useful links

Paper and software http://odin.mdacc.tmc.edu/∼yuanj
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So far

we talked about

phase I dose-finding trials

with binary toxicity

assume toxicity can be observed in a short time (the first cycle
of treatment usually)
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Phase I tite tox

Most phase I trials use a binary variable indicating that a DLT
has occurred within a time interval of fixed length t∗, which is
usually called the assessment window

Late onset toxicities refer to the toxicities occurs late toward the
end of the assessment period

Statistical methods that do not specifically address late onset
toxicities may treat an undesirably large number of patients at
toxic doses before any toxicities are observed

The TITE-CRM, by Cheung and Chappell (2000), attempts to ad-

dress the late onset toxicity by modeling the time-to-toxicity.
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Proposed methodology

We propose a Bayesian method that possesses two new
features:

The method contains a set of decision rules that temporarily
suspend accrual if the risk of toxicity at prospective doses
for future patients is unacceptably high
The method allows for restarting accrual if the risk of toxicity
reduces to an acceptable level after additional followup data
are observed.
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Probability model

Notations

Suppose we have K doses and let d1 < · · · < dK denote the K
dose levels.

First fix a sequence of times 0 = t0 < t1 < · · · < tC−1 < tC = ∞,
where [t0, tC−1] = [0, t∗] is the assessment window

Denote Ti to be the time-to-toxicity random variable for patient i

Define Yi = j if tj−1 ≤ Ti < tj, for j = 1, · · · , C. (Yi = C means
no toxicity within the assessment window)

Let T o
i be the observed time to toxicity or right censoring and

Y o
i be the observed index so that Y o

i = j if tj−1 ≤ T o
i ≤ tj.

Finally, let δi = 1 if T o
i = Ti (i.e., toxicity has occurred) and δ = 0

if T 0
i < Ti (i.e.,toxicity has not occurred).
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Probability model

Discrete time hazard model

Define discrete time hazard

Φ(βj,k) = Pr(Yi = j | Yi ≥ j, dk) =
Pr(Yi = j | dk)

Pr(Yi ≥ j | dk)

The probability of toxicity during the jth interval is

Pr(Yi = j | dk) = Φ(βj,k)
j−1
∏

h=1

{1 − Φ(βh,k)},

The probability of toxicity not occurring by tj is

Pr(Yi > j | dk) =
j
∏

h=1

{1 − Φ(βh,k)} for j ≤ C − 1.
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Probability model

Likelihood function

Denote k(i) be the index (“level") of the dose administered to
the ith patient.

At any point in the trial, the discretized data from the current n
patients take the form Dn = {(Y o

i , k(i), δi), i = 1, ..., n}.

Denoting βββ = (β1,1, · · · , βC−1,K), the likelihood is

L(β|Dn) =
n
∏

i=1

Pr(Yi = Y 0
i )δi Pr(Yi > Y 0

i − 1)1−δi

=
n
∏

i=1

Φ
(

βY o
i ,k(i)

)δi

Y o
i −1
∏

h=1

{

1 − Φ(βh,k(i))
}

.
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Latent variables

To facilitate computation of posterior quantities, following Albert
and Chib (1993, 2001), and Chib and Greenberg (1998), we
express the likelihood using a latent variable formulation.

For patient i, define the vector of latent variables Zi =
(Zi,1, · · · , Zi,Y o

i
) if Y o

i < C and Zi = (Zi,1, · · · , Zi,C−1) if Y o
i = C.

Assume that Zi,j ∼ N(βj,k, 1) if the ith patient received dose dk.

The likelihood may be augmented with the latent variables and
re-expressed as

L(β|Dn,Z) =
n

Y

i=1

n

φ(Zi,Y o

i
; βY o

i
,k(i), 1)I(Zi,Y o

i
< 0)

oδi

Y o

i
−1

Y

j=1

φ(Zi,j ; βj,k(i), 1) I(Zi,j > 0)

The augmented likelihood only involves the normal pdf while
the likelihood involves normal CDF.
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Prior

For each dose dk, we assume a state space model for the prior of
βββj = (βj,1, · · · , βj,K), defined by the recursive relationship
βj,k | βj,k−1 ∼ N(βj,k−1, σ

2
β) for j = 2, ..., C − 1, with βj1 ∼ N(βj0, σ

2
β)

and β0k fixed to ensure identifiability.

This gives the joint prior

f(βββj) ∝
K
∏

k=1

φ(βj,k;βj,k−1, σ
2
β)

for each k = 1, · · · ,K.
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Posterior computation

Denote A0 = (−∞, 0], A1 = (0,∞), and Āi,j = A1−I(Y o
i =j, δi=1). The

following process is initialized using the prior mean of β, steps 1
and 2 are iterated until convergence.

Step 1. Generation of the latent variables. Generate each Zi,j indepen-

dently from the full conditional which follows a truncated normal distribu-

tion φ(z;βj,k(i), 1)I(z ∈ Āi,j).
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Posterior computation

Step 2. Generation of β. Denote

Sj,k =
n
∑

i=1

Y o
i
∑

h=1

I{k[i] = k, h = j}σ2
β and Z+

j,k =
n
∑

i=1

Y o
i
∑

h=1

Zi,hI(k[i] = k, h = j).

Given Z and the current data, generate β from its full conditional distri-

bution under which, for k = 1, ...,K, βj,k is normal with mean β̃j,k =

{σ2
βZ+

j,k + βj,k−1 + I(k < K)βj,k+1}/{1 + I(k < K) + Sj,k σ2
β} and variance

σ̃2
β,k = σ2

β/{1 + I(k < K) + Sj,k σ2
β}.
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Posterior inference

Our posterior inference will be based on the conditional
probabilities

π(β, dk, j) = Pr(Y ≤ C − 1 | Y ≥ j,β, dk)

for j = 1, · · · , C − 1 and k = 1, · · · ,K.

π(β, dk, Y
o) is the probability that a patient who has survived

Y o − 1 intervals without toxicity will experience toxicity by t∗ =
tC−1 at dose dk.

Since Pr(Y ≥ 1) = 1, the unconditional probability of toxicity
within the window [0, t∗] is π(β, dk, 1) (denoted as π(β, dk))

It follows from that π(β, dk, j) = 1 −
∏C−1

h=j {1 − Φ(βh,k)}, and in

particular π(β, dk) = 1 −
∏C−1

h=1 {1 − Φ(βh,k)}.
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Bayesian isotonic regression

From the previous two-step computational algorithm, we obtain a
posterior sample of β, which leads to a posterior sample of
π(β, dk, j).

Since it is often assumed in phase I trials that toxicity increases
with dose, we apply the Bayesian isotonic regression
transformation (Dunson and Neelon, 2003) to the posterior sample
of π(β, dk, j).

The order-transformed posterior is denoted as π̃(β, dk, j).
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Bayesian isotonic regression

After applying Step 1 and Step 2 until convergence, we apply to the
following step to the resulting posterior samples of π(β, dk, j).
Step 3. Apply the Dunson-Neelon algorithm (2003) to

π(β, j) = (π(β, d1, j), ..., π(β, dK , j)) as follows.

The vector obtained by the Dunson-Neelon Bayesian isotonic regression

transformation is

π̃(β, dk, j) = min
k2∈Uk

max
k1∈Lk

(

1
′
k2−k1+1V

−1
j,[k1:k2]π(β, j)[k1:k2]

1′
k2−k1+1V

−1
j,[k1:k2]

1k2−k1+1

)

,

where Lk = {s : s ≤ k}, Uk = {s : s ≥ k} and 1k is the k-vector with all
entries 1.

This transformation ensures that
π̃(β, d1, j) ≤ π̃(β, d2, j) ≤ ... ≤ π̃(β, dK , j) for all j.
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Posterior quantities

The decision rules for our method rely on two different types
posterior quantities:

the posterior probabilities ξk(Dn) = Pr{π̃(β, dk, 1) > π∗| Dn} for
k = 1, · · · ,K,

and the predictive probabilities based on approximate values of
the ξk’s that involve both Dn and future outcomes.
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Posterior predictive

Let mk be the number of patients treated at dose dk who have not
been fully evaluated, indexed by i1, . . . , imk

.

Define the indicator Wir = I(Tir ≤ t∗) that patient ir will eventually
have toxicity within the assessment window, r = 1, . . . ,mk.

Let S(W k) =
∑mk

r=1 Wir be the number of patients among the mk

who will have toxicity by time t∗.

Denote pk(w,mk) the posterior probability of toxicity for dose dk after

S(W k) additional patients experience toxicity.
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Posterior predictive

Suppose π∗ is target toxicity rate of the MTD (e.g, 0.3),
.05 ≤ ξ ≤ .30 and .70 ≤ ξ ≤ .95 are predetermined cutoffs. Define
two predicted risks of toxicity (PRT) as

PNk(Dn) =
∑

w

I[ Pr{pk(w,mk) > π∗} ≤ ξ ] Pr(Wk = w | Dn),

and

PEk(Dn) =
∑

w

I[ Pr{pk(w,mk) > π∗} ≥ ξ ] Pr(Wk = w | Dn),

where Pr(Wk = w|Dn) =

∫ mk
∏

r=1

Pr(Wir = wir |π̃(β, dk, Y
o

ir
))f(β|Dn)dβ

is the posterior predictive probability.
BASS XV, Savannah GA – p.37/68



PRT

The predicted risks of toxicity

PNk(DN ) and PEk(Dn) are approximately predictive
probabilities that dk has negligible or excessive toxicity,
respectively.

PAk(Dn) = 1 − PNk(DN) − PEk(Dn) is the predictive
probability that dk has acceptable toxicity.

The key idea is that the accrual will be suspended if the posterior
probabilities ξk(Dn) suggests a different dose for future patients
from that suggested by the PRT
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Decision rules

Let dk denote the current dose. Recall that dk has negligible toxicity if

ξk(Dn) < ξ , and it is excessively toxic if ξk(Dn) > ξ. The trial is

conducted as follows:

1) The first cohort of patients are treated at a starting dose chosen by the

physicians.

2) No untried dose may be skipped when escalating.

3) At any point in the trial, if ξ1(Dn) > ξ, then stop the trial and conclude

that none of the doses are acceptably safe.

4) If ξk(Dn) > ξ and k > 1 then de-escalate to the highest dose k′ < k

such that ξk′(Dn) ≤ ξ.
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Decision rules

5) For lower probability cut-off ǫ, if ξ ≤ ξk(Dn) ≤ ξ and

5.1) PEk(Dn) ≤ ǫ then treat next cohort at dk,

5.2) PEk(Dn) > ǫ then suspend accrual and reconsider enrolling
the patient when the data for the patients currently enrolled in
the trial have been updated, which occurs when a toxicity is
observed or a patient advances from one interval to the next.
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Decision rules

6) If ξk(Dn) < ξ and

6.1) k = K then treat the next patient at dK .

6.2) k < K, PNk(Dn) ≥ 1 − ǫ and PEk+1(Dn) ≤ ǫ then treat next
cohort at dk+1,

6.3) k < K, PNk(Dn) ≥ 1 − ǫ and PEk+1(Dn) > ǫ then suspend
accrual as in 5.2,

6.4) for k < K and PNk(Dn) < 1− ǫ then suspend accrual as in 5.2.

7) At the end of the trial, among set of acceptable doses
{j : ξj(DNmax

) ≤ ξ, j = 1, · · · ,K}, select the dose minimizing
| E{π(β, dj) | Dn} − π∗ | .
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Decision rules

Rules (5) and (6) utilize the PRT criteria when the risk of
toxicity at the current dose based on the current data is either
acceptable or negligible.

These rules exploit the fact that predictive probabilities provide
information about the risk of future toxicities that cannot be
obtained from posterior probabilities alone.
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Trial example

We illustrate our method with a clinical trial of a single agent that
was conducted in patients with advanced leukemia.

The compound were shown to be safe at 1 and 1.5 units.

A higher dose may be needed to achieved to durable remission
for advanced cancer.

A trial was begun at a dose of 3 units, which was higher than
previously tried doses shown to be safe.

During a period of 6 weeks, a total of 7 patients were enrolled.

Within 6 weeks thereafter, 6 of the 7 patients experienced
severe irreversible DLTs.
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Trial example

In contrast, using our proposed method we would design this trial
to evaluate six dose levels 1, 1.5, 2, 2.5, 3, 3.5 units for three days
(denoted doses 1 through 6, respectively) with starting dose 1.5
units.

We assumed that

accrual rate 4/month

assessment window t∗ = 3 month

Max. sample size 36 patients

Target toxicity rate π∗ = .30

ǫ = .05, ξ = .30, ξ = .90

Cohort size 3
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Event chart

A representative example of how such a phase I trial would
proceed is given in the Event Chart displayed in the following figure.
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Event chart

The PRT method would have suspended accrual long enough
to observed at least 2 of the dose limiting toxicities associated
with this dose.

It ultimately would have saved at least 3 lives because
subsequent patients would not have been treated at this
excessively toxic dose.
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Hazard function

Late Onset Hazard Function
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Simulation results

True Prob(T < 3 months | dk)

d1 d2 d3 d4 d5 d6

Scenario 1 (Late Onset) 0.03 0.05 0.10 0.30 0.50 0.60 None Total Duration

PRT % Selected 0 1 26 64 9 0 0 – 1.8

# Patients 3.5 4.8 9.8 12.5 4.6 0.8 36.0 –

# Toxicities 0.1 0.3 1.0 3.7 2.2 0.5 7.8 –

Tite CRM % Selected 0 0 12 70 19 0 0 – 1.0

# Patients 3.0 3.2 4.5 11.2 9.4 4.7 36.0 –

# Toxicities 0.1 0.2 0.4 3.4 4.7 2.8 11.6 –
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Simulation results

True Prob(T < 3 months | dk)

d1 d2 d3 d4 d5 d6

Scenario 2 (Late Onset) 0.50 0.60 0.68 0.73 0.76 0.78 None Total Duration

PRT % Selected 11 0 0 0 0 0 89 – 0.8

# Patients 13.0 5.1 0.5 0.0 0.0 0.0 18.6 –

# Toxicities 5.6 2.6 0.3 0.0 0.0 0.0 8.6 –

Tite CRM % Selected 18 0 0 0 0 0 82 – 0.7

# Patients 15.1 5.6 3.7 1.8 0.7 0.3 27.2 –

# Toxicities 5.7 3.1 2.2 1.2 0.5 0.2 12.8 –
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Simulation results

True Prob(T < 3 months | dk)

d1 d2 d3 d4 d5 d6

Scenario 3 (Early Onset) 0.250 0.350 0.500 0.600 0.680 0.730 None Total Duration

PRT % Selected 44 38 3 0 0 0 14 – 1.0

# Patients 16.6 12.6 2.7 0.3 0.0 32.1 –

# Toxicities 4.4 4.7 1.6 0.2 0.0 10.9 –

Tite CRM % Selected 40 41 6 1 0 0 12 – 0.9

# Patients 17.0 11.4 3.8 0.6 0.0 0.0 32.8 –

# Toxicities 4.2 4.0 1.9 0.3 0.0 0.0 10.5 –
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Simulation results

# of Patients Accrued Per Month
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Summary

If patient accrual is rapid and toxicities occur at the targeted rate in
the toxicity evaluation window [0, t∗] but are likely to occur late in
this interval then, on average,

the PRT method gives a trial with fewer toxicities but a longer
duration compared to the TITE-CRM

the percentage of toxicities allowed by the PRT method does
not increase with accrual rate,

in some cases (scenarios 2 and 4 of our study) the TITE-CRM
is more likely than the PRT method to select a final dose
having excessive toxicity probability (≥ 0.50).
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Phase II AR

Now consider the third type of trials

there are multiple treatment arms under comparison

each patient is to be randomized to one of the arms

a treatment arm is superior if it is more effective with similar
toxicity or if it is less toxic with similar efficacy

the assessment window of efficacy/toxicity is quite long, e.g.,
52 weeks
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Challenges for AR

Adaptive randomization (AR) is desirable since more patients are
usually assigned to the better treatment arms. The challenges in
the AR are

How to use the information contained in the patients that have
not completed followup (e.g., 52 weeks) for randomization?

How to incorporate the joint efficacy/toxicity responses from
patients into the AR probability?
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Main idea

Use a failure time regression to estimate the joint
efficacy/toxicity probability at the end of followup

Use a latent modeling approach to achieve simple posterior
computation

Elicit a probability measure to incorporate joint efficacy/toxicity
responses into the AR probabilities
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Notation

Let us focus on models for one treatment arm first.

Let ti be the followup time for patient i; let tmax be the followup
duration; apparently, ti ≤ tmax.

Let Zkli(ti) be the joint efficacy/toxicity indicator at time ti for
patient i, k, l = 0, 1.

Let πkli = Pr(Zkli(ti) = 1) be the probability of the joint
efficacy/toxicity at time ti.

For example, π01i = Pr(Z01i(ti) = 1) is the probability of
no-efficacy/toxicity at time ti.

Last, let pkl = Pr(Zkli(tmax = 1), which are the parameters of
interests.
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Failure time model

Outcomes Outcomes by time ti Row

by time tmax No-Eff & No-Tox No-Eff & Tox Eff & No-Tox Eff & Tox total

No-Eff & No-Tox p00 0 0 0 p00

No-Eff & Tox p01(1 − wi) p01wi 0 0 p01

Eff & No-Tox p10(1 − wi) 0 p10wi 0 p10

Eff & Tox p11(1 − wi)
2 p11wi(1 − wi) p11wi(1 − wi) p11w2

i p11

Column total π00 π01 π10 π11 1

The weight wi = ti/tmax (see Cheung and Chappell, 2000,
Biometrics).

A general Bayesian approach for estimating wi based on
interim data is given in Ji and Bekele (2008, Biometrics).
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Failure time model

Summarizing the table, we have

π00i = p00 + p01(1 − wi) + p10(1 − wi) + p11(1 − wi)
2,

π01i = p01wi + p11wi(1 − wi),

π10i = p10wi + p11wi(1 − wi),

π11i = p11w
2
i .
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Likelihood

Given the failure time model,

The likelihood function for patient i is

Li(p00, p01, p10, p11) ∝
1
∏

k=0

1
∏

l=0

π
Zkli(ti)
kli

The full likelihood function is then L =
∏n

i=1 Li.
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Latent modeling

If we plug in the πkli’s as functions of pkl’s, the likelihood
function involves quardrinomial expansions.

A latent modeling approach is proposed to simply the
computation.
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Latent variables

Z ’s are observed. Given the column total Z, the cell entries in that
column are the latent variables which follow a multinomial
distribution with parameters Z and the corresponding probabilities
in the previous table.

Outcomes Outcomes by time ti

by time tmax No-Eff & No-Tox No-Eff & Tox Eff & No-Tox Eff & Tox

No-Eff & No-Tox y001i 0 0 0

No-Eff & Tox y002i y012i 0 0

Eff & No-Tox y003i 0 y103iwi 0

Eff & Tox Z00i(ti) −
P3

h=1 y00hi Z01i(ti) − y012i Z10i(ti) − y103i Z11i(ti)

Column total Z00i(ti) Z01i(ti) Z10i(ti) Z11i(ti)
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Computation

Assume (p00, p01, p10, p11) follows a Dirichlet prior.

With the latent variables, one can write down an augmented
likelihood involving products of multinomials.

By assuming multinomial distributions for the latent variables,
the posterior computation can be carried out in a standard
fashion.

Using the results in Tanner and Wang, 1987, JASA, we show
that the random samples of (p00, p01, p10, p11) computed using
the augmented likelihood and multinomial latent distributions
are posterior samples under the original likelihood function and
the Dirichlet prior.
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AR probability

Extend the notation so that (p00j, p01j , p10j, p11j) denote the joint
probabilities of efficacy/toxicity for treatment arm j

Using proposed models, we can compute posterior samples of
(p00j, p01j, p10j, p11j) for each arm

The AR probability

qj =
ξj

∑T

j=1 ξj

,

in which ξj is a measure of desirability of arm j.
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Measure ξj

Let πE
j = p10j + p11j be the marginal probability of efficacy for

arm j

Let πT
j = p01j + p11j be the marginal probability of toxcity for

arm j

We define
ξj = Pr((πE

j , πT
j ) ∈ A|data)

as the measure of desirability, where A is an acceptable region.
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Acceptable region

The acceptable region A is given by
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AR scheme

First, need a run-in stage when a small number (say 10 per arm) of
patients are equally randomized.
Then, when a patient is enrolled,

Compute the posterior of (p00j, p01j, p10j , p11j) for each arm j
based on the proposed models

Compute the measure of desirability ξj using the posterior
samples of (p00j, p01j, p10j , p11j)

Randomize the patient to arm j with AR probability qj
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A simulated trial
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